
Abductive Conditionals as a Test Case for Inferentialism

PATRICIA MIRABILE & IGOR DOUVEN (Sorbonne Université)

-- LRW 2019

If the UK is a monarchy, then cats are felines.

How to explain the strangeness of missing-link conditionals?

1.

Inferentialism

An inferential semantics of conditionals

A conditional is true iff there is a strong enough argument from antecedent to consequent, given background knowledge.

- Proposed by Krzyżanowska, Wenmackers and Douven (2014).
- Compelling argument can include deductive steps and ampliative steps: inductive and abductive inferences.
- Does not validate Centering.

9

(1) Truth of a conditional

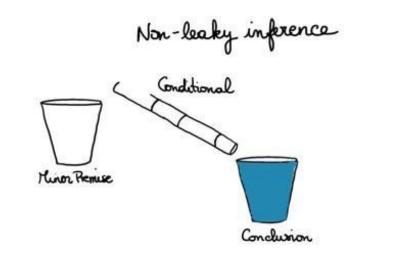
 Strength of inferential connection between antecedent and consequent predicts endorsement rate of conditional being true.

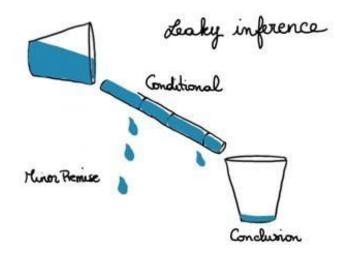
H

(1) Truth of a conditional

- Strength of inferential connection between antecedent and consequent predicts endorsement rate of conditional being true.
- Alternatively: truth of a conditional is predicted by the number of available alternative models in which the conditional is not true.

9


(2) Modus Ponens arguments


Strength of inferential connection between antecedent and consequent of the major premise in MP predicts rate of endorsement of the conclusion, keeping confidence in minor premise fixed.

÷

(2) Modus Ponens arguments

- Strength of inferential connection between antecedent and consequent of the major premise in MP predicts rate of endorsement of the conclusion, keeping confidence in minor premise fixed.
- Alternatively, suppositional account: rate of endorsement of the conclusion is predicted by probability of the conditional, as given by the Equation: P(If p, then q) = P(q|p).

Conditionals as "leaky pipes"

Abductive conditionals

Inferential strength is determined by explanation quality

Hypotheses

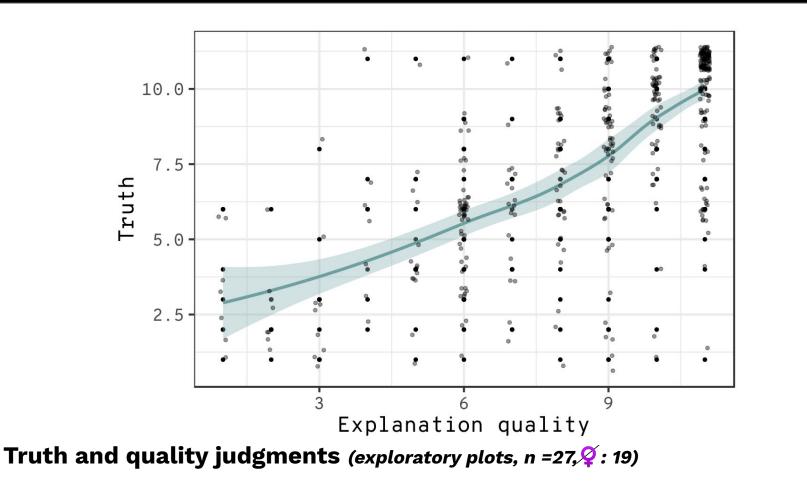
H1. Explanation quality of the consequent, given antecedent as explanandum, predicts endorsement rate of conditional being true.

=> Compare with: number of retrieved counter-examples predicts endorsement (Cummins et al, 1991; De Neys et al, 2003). H2. Explanation quality of the consequent, given antecedent as explanandum, predicts endorsement rate of conclusion of MP being true.

=> Compare with: probability of the conditional (as defined by the Equation) predicts endorsement.

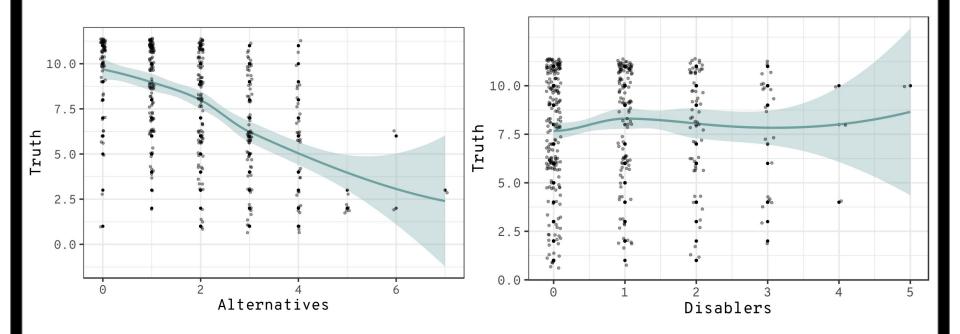
Materials

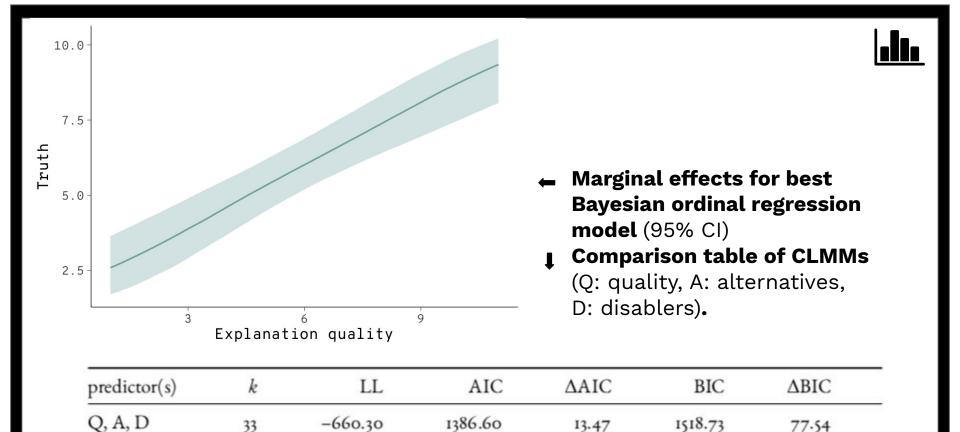
If John did well on his exam, then he studied hard. If the water is boiling, then it was heated to 100°C.


- 16 abductive conditionals referring to everyday situations of the form "If EVENT, then EXPLANATION."
- Adapted from causal conditionals developed by Cummins, Lubart, Alksnis & Rist (1991) and by de Neys, Schaeken & d'Ydewalle (2003).

Experiment 1: truth of a conditional intro explanation quality distraction truth ratings

- 'Suppose we observe that φ . We propose to explain this by ψ . How would you rate the quality of this explanation?' [11-point Likert scale]
- 'How strongly do you agree that this statement is true?' [11-point Likert scale]


- 'Can you find other possible explanations for this fact?' [60s per item]
- 'Can you find examples of events that could have prevented the explanation from producing this fact?' [60s per item]



 \sim

 \sim

Truth and # of generated counter-examples (exploratory plots, $n = 27, \cancel{9}$: 19)

1514.23

1373.13

13.47

141.10

0.00

1610.33

1441.19

33

24

17

-733.12

-669.56

A, D

	ı6

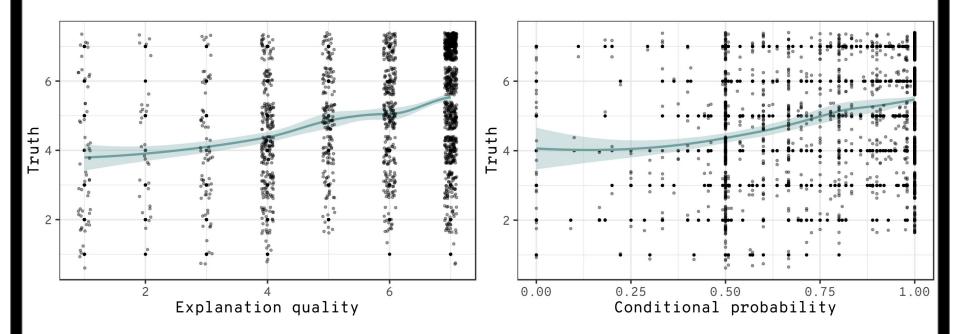
77.54

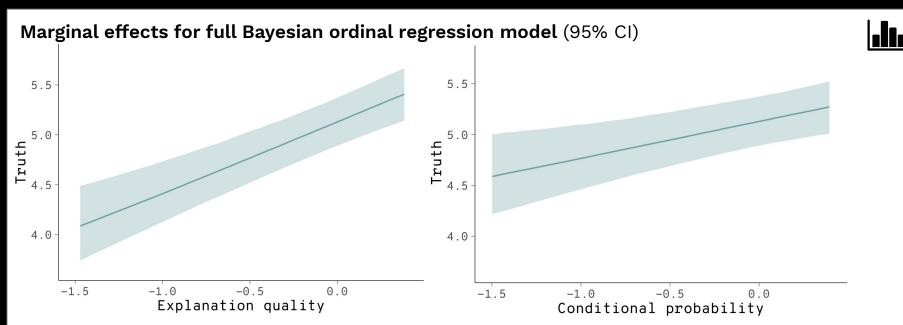
169.13

0.00

TRUTH OF ANSABDUCTIVE CONDITIONAL

Strong support for Inferentialism. Explanation quality, which determines inferential strength, is the best predictor of rate of endorsement of a conditional.


Experiment 2: MP arguments



- 'How would you rate the quality of this explanation?' [7-point Likert scale]
- Minor premise: Dennis tells you that φ. [4 witnesses with 100, 75, 50, 25% reliability]
 Major premise: Now suppose that if φ, then ψ.
 How strongly do you agree that it is true that ψ? [7-point Likert scale]
- Rate four situations: $\phi \& \psi, \phi \& \neg \psi, \neg \phi \& \psi, \neg \phi \& \neg \psi$. [Must sum to 100%; used to compute conditional probability]

 \sim

Truth vs quality judgments; truth vs conditional probability (exploratory plots, n = 120, Q : 70)

Comparison table of CLMMs

(WR: witness reliability, EQ: explanatory quality, CP: conditional probability)

predictors	k	LL	AIC	ΔΑΙC	BIC	ΔBIC
WR, EQ, CP	п	-2445.96	4913.92	0.00	4973.71	0.00
WR, EQ	IO	-2453.97	4927.93	14.01	4982.29	8.58
WR, CP	ю	-2.481.31	4982.62	68.70	5036.98	63.26

MODUS PONENS ARGUMENTS

Again, strong support for Inferentialism. Explanation quality, which determines inferential strength of the major premise of an MP, is a stronger predictor of rate of endorsement of the conclusion.

PUTTING INFERENTIALISM (S) TO THE TEST

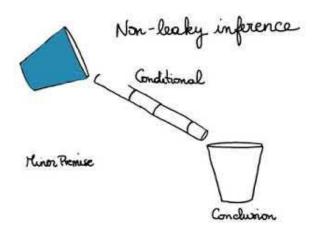
- Inferentialism: requires a compelling argument from antecedent to consequent, with a broad notion of inference.
- Using realistic abductive conditionals, where the inferential connection is an explanatory relationship, found strong support for inferentialism.
- Inferential connection in abductive conditionals is highly predictive of truth of conditionals and of endorsement of MP conclusions.
- Note that probability still had predictive power.

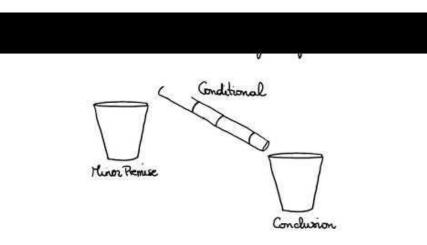
Thanks!

Any questions?

You can reach us at

- mirabile.patricia@gmail.com
- igor.douven@gmail.com


The conditional "If p, then q" is an inference ticket which allows us to "travel" from p to q (which we may in fact never do).



Asserting "If p, then q" is like asserting "p, so q", without committing oneself to the truth of either p or q.

- RYLE, G. (1950). 'If', 'So', and 'Because'.

Conditionals as "leaky pipes"